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Abstract

To provide a Kolmogorov-type condition for characterizing a best approximation in a continuous
complex-valued function space, it is usually assumed that the family of closed convex sets in the
complex plane used to restrict the range satisfies a strong interior-point condition, and this excludes
the interesting case when sofgis a line-segment or a singleton. The main aim of the present paper
is to remove this restriction by virtue of a study of the notion of the strong CHIP for an infinite system
of closed convex sets in a continuous complex-valued function space.
© 2005 Elsevier Inc. All rights reserved.

1. Introduction

Throughout this papet (Q) will denote the Banach space of all complex-valued con-
tinuous functions on a compact metric sp&cendowed with the uniform norm (the “Sup-
norm”). Let P denote a finite-dimensional subspace(@iD), and let{Q; : ¢ € Q} be a
family of nonempty closed convex sets in the complex plan8et

Pao=1{peP: p@k) e foreacht € Q0}. (1.1

The captioned problem is that of finding an elemgiite Pq for a function f € C(Q)
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such that
If = p*l = inf IIf = pl (1.2)
pePa

(such ap* is called a best restricted range approximatiori foom 7 with respect to
{Q,}). This problem was first presented and formulated by Smirnov and Smirifi24,26];

their approach followed the standard path for the corresponding issue in the real-valued
continuous function space theory. In [24], while it was pointed out that this problem for
the general class of restrictions was quite difficult, they took up the special case when
each(); is a disc inC. Later, in a series of papers by them and by others [26-28,11,14],
a more general class ¢f,} has been considered but each of them is still under a general
strong interior-point condition assumption that there exists an elemehtP, such that

it Nyep (Q—p(t)) # ¥ (henceink; # Pforeach e Q). Thisunfortunately excludes the
interesting case when sorf is a line-segment or a singleton Our results in Section

3 further relax the restriction by allowing the interesting case just mentioned. Letting

C,={ueC(Q): u@®) Q) foreachr e Q, (1.3)

we note tha{P, C, : t € Q}is afamily of closed convex sets( Q) with the intersection

P ﬂ(ﬂleQ C;) = Pq. The main aim of this paper is to provide some characterizations
for p* to satisfy (1.2) in a reasonable case (under appropriate continuity assumption of
the set-valued mapping— €, and a suitably relaxed interior-point condition). One such
characterizationis given, as in the corresponding real case, by a condition of the Kolmogorov
type. Our results are obtained here by virtue of a study of the strong CHIP (the strong conical
hull intersection property) for an infinite family of closed convex sets in a Banach space.
The notion of the strong CHIP was first introduced by Deutsch §f @] for a finite family

of closed convex sets in a Euclidean space (or a Hilbert space) and was recently extended by
Liand Ngin [14] to an arbitrary family of closed convex sets in a Banach space. In [16], this
notion was studied extensively and some useful sufficient conditions for the strong CHIP
were established.

We end this introduction with a short remark that having obtained the characterization
results as presented in Section 3, the issue of the uniqueness of solutions for the corre-
sponding problems can be addressed along a well-established path (cf. [11]) and we need
not further elaborate here.

2. Notations and preliminary results

We begin with the notations used in this paper, most of which are standard (cf. [5,10]).
In particular, we assume thxtis a complex (or real at times) Banach space. For & set
in X (or in R"), the interior (resp. relative interior, closure, convex hull, convex cone hull,
linear hull, affine hull, boundary, relative boundary)is denoted by inZ (resp. riZ, Z,
convZ, coneZ, spanZ, aff Z, bdZ, rb Z); the normal cone i atzg is denoted by (zo)
and defined by

Nz(z0) = {x* € X*: Re(x*,z—z0)<0 foreachz € Z}. (2.1)

The distance fromg to Z is denoted by/ Z (zp).
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Our main tools are the following Theorems 2.1 and 2.2 taken {t@nCorollaries 4.2
and 5.1]. It would be convenient for us to repeat some of the definitions introduced in [16]
as well as some other more standard notions in this regard degiote an index-set which
is assumed to be a compact metric space. AfafdilyC; : i € I}is called a closed convex
set system with base-s8t(CCS-system with base-s€) if C andC; are nonempty closed
convex subsets of for eachi € 1.

Definition 2.1. A CCS-system{C, C; : i € I} (with base-seC) is said to satisfy:

(i) the interior-point condition if

c (ﬂ int cl-) £ 0 (2.2)

iel

(i) the strong interior-point condition if

c (int N c,-) + 0 (2.3)

iel

(i) the weak—strong interior-point condition with the pé&lii, 1») if there exist two disjoint
finite subsetd1 and; of | such that eacly; (i € I») is a polyhedron and

e ) (int N c,-) N (ﬂ fi cl-) (G #9. (2.4)

iel\(I1UD) iel icl

Any point x belonging to the set on the left-hand side of (2.2) (resp. (2.3), (2.4)) is
called an interior point (resp. a strong interior point, a weak—strong interior point with
the pair(/1, I2)) of the CCS-systeniC, C; : i € I}.

It is trivial that (2.2)— (2.3). The converse also holds in some cases, one of which
will be described in terms of the continuity of some set-valued functions (cf. [16]). For
set-valued functions there are many different notions of continuity. In Definitions 2.2 and
2.3 below, we recall two frequently used ones. We assum&Xtisah compact metric space.

Definition 2.2. Let F : Q — 2% be a set-valued function defined @and letrg € Q.
ThenF is said to be

(i) lower semicontinuous ap, if, for any yo € F(r9) and anye > 0, there exists an open
neighbourhood/ (7o) of 79 such that, for eache U (tp), B(yo, &) N F(¢) # 0.

(i) upper semicontinuous &j if, for any open neighbourhoodof F(zg), there exists an
open neighbourhoot (7g) of 7 such thatF' () C V for eachr € U (1p).

(iii) lower (resp. upper) semicontinuous @nif it is lower (resp. upper) semicontinuous
ateachr € Q.

Definition 2.3 (cf. Singef[23, p. 55]). LetF : 0 — 2 be a set-valued function defined
onQ and letrg € Q. ThenF is said to be
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(i) upper Kuratowski semicontinuous atif, for any sequencér.} € Q, the relations
iMoo tk = to, Mg Xy = X4, X, € F(tr), k=1,2,...imply x,q € F(to).

(ii) lower Kuratowski semicontinuous & if, for any sequencér,} € Q, the relations
iMoo & = t0, yo € F(to) imply limy_, oo dr () (y0) = 0;

(iif) Kuratowski continuous afy if F is both upper Kuratowski semicontinuous and lower
Kuratowski semicontinuous &j.

(iv) Kuratowski continuous oR if it is Kuratowski continuous at each point Qf.

Remark 2.1. Clearly,

(i) Fis upper semicontinuous —iE upper Kuratowski semicontinuous.
(ii) Fis lower semicontinuous < is lower Kuratowski semicontinuous.

Moreover, the converse of (i) holds provided that the unigsy F(¢) is compact.
Let{A; : i € J} be afamily of subsets of. The sed ", _, A; is defined by

[ {Xics @i ai €A Jo < Jbeingfinitg if J £,
2 A= { {0} it J =9, (2.5)
ie
Definition 2.4. Let{C; : i € I} be a collection of convex subsetsXfindx € (,.; Ci.
The collection is said to have
(a) the strong CHIP atif

NAye 600 = ) Ne, (). (2.6)

iel

(b) the strong CHIP if it has the strong CHIP at each pointef; C;.

Theorem 2.1. Letxp € C N (Njes Ci). The systeniC, C; : i € I} has the strong CHIP
at xg if the following conditions are satisfied:

(a) The system{C, C; : i € I} satisfies the weak—strong interior-point condition with
(11, I2).

(b) The set-valued mapping— C; is lower semicontinuous on |.

(c) Atleast one of the sets in the famfly, C; : i € I1} is finite-dimensional.

Theorem 2.2. Suppose that the CCS-systét C; : i € I} satisfies the interior-point
condition, dimC < +o0 and that the set-valued function— (affC) N C; is Kuratowski
continuousThen the systedC, C; : i € I} has the strong CHIP.

We end this section with two results on characterizations of the strong CHIP of a (possibly
infinite) system{C, C; : i € I} of closed convex sets. The first result, which is valid in a
general Banach space and will be used in the next section, is given in terms of the optimality
conditions of a constrained best approximation while the second result in the Hilbert space
setting is given as a dual formulation of a constrained best approximation (see for example,
[3,4,7-9,12-15,17,18]). To this end, we need a well-known result on the characterization
of the best approximation by a convex seXinwhich was established independently by
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Deutsch6] and Rubenstein [20] (see also [1]). For a closed convex sideétX, let Py
denote the projection operator defined by

Py(x) ={y e W:llx -yl =dw)}.

Wheredy (x) denotes the distance froxio W. Recall that the duality majfrom Xto 2X*
is defined by

J@) =% e X* 1 (2%, x) = IIx]?, e = [x]l}. (2.7)

Proposition 2.1. Let W be a closed convex set inThen for anyx € X, zg € Pw(x) if
and only ifzg € W and there exists* € J(x — zo) such thatRe(x*, z — zg) <0 for any
z € W, thatis,J(x — z0) N Nw(zo0) # @. In particular, when X is smooth,y € Py (x) if
and only ifzo € W and J (x — zo) € Nw (z0).

Theorem 2.3. Let K = C N (N;¢; C;) andxg € K. Consider the following statements.

(i) The systemiC, C; : i € I} has the strong CHIP atp.
(iiy Foreachx € X, xp € Px(x) ifand only if

Jx —x0)() (Nc (x0)+ Y N, (xo)) # 0. (2.8)

iel

(iif) Foreachx € X, xg € Pk (x) if and only if

J(x = x0)lc—xo[ ) (Nc(x0)|Cxo +Y  Ne, (xo)lcm> # 0. (2.9)

iel

Then the following implications hold.

(1) (i) = (i) <= (iii).
(2) (i) < (i) <= (iii) if X is both reflexive and smooth.

Proof. Note the following equivalence:

J(x —x0) " (Nc (o) + Y ¢/ Ne, (x0)) # 0 (2.10)
= J(x = x0)|c—xo N (Nc@x0)lc=xo + Y ics Ne, (x0)|c—xo) # 9. .

Indeed, implicatior=>in (2.10) is trivial; hence it suffices to show the converse implication.
Thus, letx* € J(x —xg) be such that*|c_y, € J (x —x0)lc—xo () (Nc (x0)lc—xo + X i/
N¢, (xo)|c_xo). Then there existx; € Nc(xo), a finite subsetJ of | and
x} € Nc,(xo) for eachi € J such thatr*|c_x, = Y itg XF|c—xo. Write y* = x* —
Y omox’. Theny* € Nc(xg) and sox* = y* + 37" o x € Nc(xo) + Y ;c; Ne; (x0).
Hencex* € J(x — x0) () (Nc(x0) + X_;c; Nc; (x0)). Therefore (2.10) is true.

Now, using (2.10), one can complete the proof in the same way as that given for [15,
Theorem 3.1]. O
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For the remainder of this section, [¥tdenote a Hilbert space (ové or C), and we
considerX* = X as usual. In particular, the normal cone of a nonempty sétg can be
redefined asVz(z0) = {y € X : Re(y,z —z0)<0 forallz € Z}. LetI(xg) = {i €
I : xo € bdC;}. Then, similar to the proof dfLl4, Theorem 4.1], we obtain the following
theorem.

Theorem 2.4. Let X be a Hilbert spacek = C N (N;¢; C;) and letxg € K. Then the
following statements are equivalent.

(i) The systeniC, C; : i € I} has the strong CHIP atg.

(i) Foranyx € X, Px(x) = xo if and only if there exists a finitgpossibly empty}et

Io € I such thatPe(x — Zielo hi) = xo for someh; € N, (xg) for eachi € Io.
Now, letC be a closed convex setii{h; : i e I} Cc X\ {O}andlet{Q; : i e [} bea

family of nonempty closed convex subsets of the scalar field. Define

Ci={xeX: (x.hi)eQ)}, iel, (2.11)

and
K=c() (ﬂ 6,) . (2.12)

Letxo € K. For convenience, we shall wrife(-) for the function(;, -) on X, andh? for
the scalarh;, xo). Then we have the following assertion:

N (xo) = {ath; : o € Ng,(h?)} for eachi e 1. (2.13)

This assertion was proved in the proof[@#, Theorem 4.2]. Here we give a direct and
much simpler proof. In fact, it is direct that the set on the left-hand side contains the one on
the right-hand side of (2.13). To show the converse inclusiomﬁeienote the orthogonal
complement of; and letx* e Ng, (x0). Then, for each € hiL andy € C, Re(x*, yx)<0
sinceyx + xg € 6,-; hencex*J_hil andx* = ah; for some scalas € C. Since, for each

p € Q;, there existx € a such thath;, x) = 8, we have that

Rea(f — h?) = (x*, x — x0) <O.

This means that € Ng, (h?). Thereforex* belongs to the set on the right-hand side of
(2.13) and (2.13) is proved. Thus, by (2.13) and Theorem 2.4, we immediately obtain the
following perturbation theorem, which was given in [14]. Note that the proof here is much
simpler than that in [14].

Corollary 2.1. Let X be a Hilbert space and lep € K, whereKk is defined by(2.12).
Then the following statements are equivalent.

(i) The collection of closed convex sé€s C; : i € I} has the strong CHIP ato. and
(i) Foranyx e X, Pg(x) = xo if and only if there exists a finitgpossibly empty}et

Io € I such thatPe(x — Z,E,O %;h;) = xo for somey; € Ng, (h?) for eachi € Io.
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3. Characterization for constrained approximation in complex-valued function
spaces

Let C(Q) denote the Banach space of all complex-valued continuous functions on a
compact metric spad@ endowed with the uniform norm:

£l = r;;aQXIf(t)l for eachf € C(Q). (3.1)

Let P be ann-dimensional subspace 6f(Q) and{Q; : ¢ € Q} a family of nonempty
closed convex sets in the complex plabeFor brevity, we write{Q,} for {Q; : ¢ € QO}.
Note that, for each € Q, Q, is either a point or a linear-segment, or a “planar” convex set
(of real dimension 2) in the complex plafie Set

Pao={peP: pk) € foreacht € Q}. 3.2)

The problem considered here is that of finding an elempént P for a functionf € C(Q)
such that

If—p*ll = inf [If—pl, (3.3)
r€Pa

(such ap* is called a best-restricted range approximatiohftom P with respect tqQ; };
see[24,28,11,14)).
We assume that

0=0sJoelJow. (3.4)
where

Qs ={t € Q: Q isasingleton,

Qp=1{teQ\Qs: intQ =0},

On={reQ:intQ, £ 0}
We also assume for the whole section that

Os U Qg is finite. (3.5
We introduce some short notation of conditions for easy reference.

e ICp: P contains the constant functions and there exists an elementPq such that
p(r) € intQ, for eachr € Q, that s,
Oe () int(@ — p). (3.6)
teQ
e IC: There exists an elemepte Pq such that

0cint ( ) @ - ﬁ(t))) N ( () ri@ - ﬁ(z))) ) (3.7)

teQn teQp



166 C. Li, K.F. Ng / Journal of Approximation Theory 136 (2005) 159-181

e UKC: The set-valued function— €, is upper Kuratowski semicontinuous n
e LKC: The set-valued function— Q, is lower Kuratowski semicontinuous @p.
e KC: The set-valued function— Q; is Kuratowski continuous o@Q.

We will see later that these conditions closely relate to some corresponding properties of
the CCS-systentiP, C; : t € Q} in C(Q), where(C, is defined by (1.3). Lef € C(Q)
andp* € Pq. We fix this pair of functions f, pin what follows. Define

a(t) = f(t) — p*(t) foreachr € Q. (3.8)
Set

M(o) ={t € Q: |a(O)] = llall}
and

B(p*)={te Q:p*(t) ebdd}, B’(p*)={reQ\Qs: p*(t) e rbQ}.
(Here we adopt the convention that@Qd= Q; if Q, is a singleton.) Note that

B (p*) = (B(p") N Qn) Ut € Qp & p*(1) € thQY) (3.9)

and in particular thaB”? (p*) € B(p*). Moreover,B"?(p*) = B(p*) in the case whe® g
and Qg are empty (e.g., when gholds).

Let span, (Q; — p*(¢)) denote the real subspace spanneddy- p*(¢) in C. Then
spary (Q; — p*(1)) is the whole complex plan€ if r € Qy, alineinCif t € Qg and a
singleton{0} if r € Q5. Set

Pr={peP: pQ) espar (Q — p*(t)) foreacht € Qr U Qg}. (3.10)

Note thatPy is a real subspace @ and thatPgr = P if 0 = Qu. Let mdenote the
real dimension ofPg: dimgPr = m, and lety, ..., y,, be a real basis 0P, that is,
each element dPg can be uniquely expressed as a real linear combinatign af. ., ¥,,,.
Moreover, let{¢, ..., ¢,} be a (complex) basis @?, that is, each element @ can be
uniquely expressed as a complex linear combinatiopof . ., ¢,,.

We define

©(t) = {t € —=Nq,(p* (1)) : |1 =1} foreach re Q. (3.11)
Note that ift € Qy N B(p*) andzt € (¢) then
Ret(z — p*(1)) > 0 (3.12)

forall z € intQ,. Since int), = @ if t € O \ Oy, we have to define two more set-valued
functions fromQ to the unit sphere df:

(1) foreachr € QO \ O,
()= {reC: |7]=1, Ret(z — p*()) >0 (3.13)
Vz € iy} for eachr € Qg
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and
(1) foreachr € Q \ QOg,
() = ] . for eachr € Qg with p*(r) € ri Q,, (3.14)
é:[’j*ggl for eacht € Qf with p*(r) € IbQy, z € Q; \ p*(2).

(Note that% does not depend on the particular choice a$<); is a line-segment for
te Q.

Remark 3.1. (i) Foranyr € Q,1(t) # 0 <=t € B(p*).
(i) Foranyt € Qp,
7,(t) # ¥ <=t € B (p*) <t/ (1) is a singleton (3.15)
(iii) If + € B"*(p*) N Qg andt € —Ng, (p* (1)) with || = 1, then
1 ¢ 1,.(t) &< Ret(z — p*(t)) =0 foreach; € Q;, &= Ret(z — p*(t)) =0

for somez € Q. (3.16)
(iv) For anyt € Q, t,f (¢) is compact

TH (1) C 1, (1) € 1(2). (3.17)

Letr € B"*(p*)N QF, t € 7,(r) and let Pr(r) denote the projection afon the subspace
sparg (Q — p*(#)). Then Pr(z) # 0,

PI} (T) + _ _—
ReT = RezP
P (o) et (r) and T ezPr (1)
for eachz € spar, (Q; — p*(1)) . (3.18)

For eachr € Q, letc(r) ¢ C", c.(t) C R™ andc/ (¢) be defined, respectively, by

ct) = {(¢1(DT, ..., ¢, (D : T € (D)}, (3.19)
(1) := {(Rey1 ()7, ..., Rey,, ()7) : © € 1,(1)} (3.20)
and
¢ (1) := {(Rey1(1)7, ..., Rey,, (D) : T et (1)) (3.21)
Set
U= J con. U= (J co. U= |J co. (3.22)
teB(p*) teB"b(p*) teB"0(p*)

Note that these sets are bounded and that, by (3.17) and (3.18),

urcu < | (). (3.23)
O<n<1
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Recalling (3.8), we definb(r) € C" andb, (r) € R™, respectively, by
b(t) = (¢1(1). ... ¢,(1))a(t) = (P1(1)o (D), ..., d,(1)a (1))

foreachr € Q (3.24)
and
b, (t) = Re(q(t), ..., ¥, (t)a(t) foreachr € Q. (3.25)
We define
V=1{b@): te M)}, V ={b(t):teM()} (3.26)

Clearly they are compact sets. Set

w=v(Ju. wW,=v.Ju.. wr=v.|Ju . (3.27)
Note that they are bounded sets. Also, by (3.23),
whew.c [ (w). (3.28)
O<r<1

This implies that

cowt ccow, cco | ) (W) e | (tcowh). (3.29)
O0<r<1 0<r<1

where the last inclusion can be verified by a routine verification.

Let
C;={ueC(Q): u@) €Q,} foreacht € Q. (3.30)
Then
Pq = Pﬂ (ﬂ Ct) . (3'31)
teQ

Clearly {P,C, : t € Q}is a CCS-system with a base-§@t To prepare for our main
result, we first give a few lemmas. These lemmas will show in particular that the condi-
tions introduced at the beginning of this section for the syq@phare naturally linked to
some desirable properties of the systg C, : ¢+ € Q} so that the results in Section 2
are applicable. The first of the lemmas describes the connections of the conditipns IC
IC for the system{Q,;} and the interior-point conditions for the systéf, C; : ¢t € Q}

while the second describes the connection of the normal corfesarfd that of the corre-
spondingC;.

Lemma 3.1. (i) The systerft, } satisfiedCq if and only if the CCS-syste{®, C; : ¢t € Q}
satisfies the interior-point conditiofurthermore, O¢ convl/ if the systenf(,} satisfies
ICo.
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(il) The systerf), } satisfiedC if and only if the CCS-syste{®, C, : ¢t € Q} satisfies the
weak—strong interior-point condition with the pai@ ¢, Q). Furthermore, O¢ convl{, if
the systenf€, } satisfiedC.

Proof. Leta > 0 and fy € C;. We claim that
B(fo, %) € C; < B(fo(t),x) € Q, foreachr € Oy, (3.32)

B( fo. oc)ﬂaff C; C C; < B(fo(1), oc)ﬂaff Q, €Q, foreachs € Q.
(3.33)

We shall only prove (3.33) (the proof of (3.32) is similar). To do this, we need only establish
the necessity part. Note first the following obvious fact:

aff C;, ={u e C(Q): u@) € aff Q,;} foreachr € Q. (3.34)
Letr € Qg and assume that
B(fo. o) ()affC; € C;. (3.35)

Let z € B(jfo(r), o) [ aff Q,. We have to show that € Q,. By the Tietze Extension
Theorem, there existse C(Q) such that|s| = s(r) = 1. Define
f(w) = fo(w) +s(w)(z — for)) Yw e Q.

Then| f — foll <lz — fo(t)|<o. Sincef(t) = z € aff Q;, f e aff C, by (3.34). Conse-
quently, f € C; and hence = f(r) € (, as required. Therefore, our claim stands.
By (3.32), we have that

intC; ={ueC(Q): u() €intQ,} foreachr € Q. (3.36)
Thus the first part of (i) is clear. Again by (3.32),

int () Ci={ueC@:umeint [ Q. (3.37)

teQn teQn

while, by (3.33),
MNnC; ={ueC(Q): u() eriQ,} foreachr € Q. (3.38)

Combining (3.37) and (3.38), the first part of (ii) is also clear.

Thus, to complete the proof, it remains to show that (ag¢ 6onvi4,. if IC is satisfied
and that (b): O¢ convl/ if ICq is satisfied. We shall only prove (a) as the proof for (b) is
similar. Suppose that there exist, . . ., As € [0, 1] with Zj.zl Zj = lands,..., t e
B (p*), 7; € 1,(t}), j=1,...,ssuchthat

Re)  p(t))ijv;=0 (3.39)
j=1
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holds for eachp € {y4,...,,,} and hence for each € Pg. Assuming IC with some
p € Pq satisfying (3.7), lep := p — p*. Since, eacln} € B"’(p*) and each’j € rr(t}),
we obtain, by (3.12), (3.7) and (3.13) that

Rep(1))7; = Re(p(t}) — p*(1)))7; > 0 foreachj =1,....s. (3.40)
This contradicts (3.39) and hencetGconvi/,. [

Lemma 3.2. Letr € Q and assume thgi* € C,. Then
Nc,(p*) = {oe; : « € Ng,(p*(1))}, (3.41)
wheree, denotes the point-functional an(Q) defined by

(e;,u) =u(t) foreachu € C(Q). (3.42)

Proof. Letu e C(Q). Letz € Q; be such thatlg (u(r)) = |z — u(?)|. By the Tietze
Extension Theorem, there exists a functione C(Q) such thatjw]| = |u(z) — z| and
w(t) = u(t) —z (sou —w € C;). Thendc, ) < |lu — (u — w)|| = |z —u@®)| = dg, (u(?)).
Consequently,

dc,(u) =dg,(u(t)) foreachu e C(Q) (3.43)

as itis straightforward to verify thaf, (1) > dq, (u(?)). Sincep™ e C; (and sop™* (1) € ),
(3.43) and the proof dfL4, Lemma 5.2 (iii)] imply that

ddc, (p*) = {ve; € C(Q)* 1 a € ddg, (p™ (1))} (3.44)
Recalling from[5] that

ddc,(p*) = {x* € N¢,(p™) : [Ix*I<1} and
ddgy, (p* (1)) = {o € No, (p*(1)) = |al <1}, (3.45)

it follows that (3.41) holds. O

Lemma 3.3. (i) If UKC is satisfied,then the set-valued function — C; is upper
Kuratowski semicontinuous af.

(ii) If LKC is satisfiedthen the set-valued functian— C; is lower Kuratowski semi-
continuous ornQ (and so is the set-valued functior> P N C; if 1 € P).

Proof. Letry € Q and{r} € Q be a sequence convergentgo

(i) Let fi € C, for eachk be such that fi — fIl — 0. Then, fi(tx) € Q,, for eachk
and fi(tx) — f(to) ask — oo. By the condition UKC, it follows thayf (10) € Q,, and so
f € Cy,. This proves (i).

(i) Let fo € Cy (Or fo € PN Cy if 1L € P). Then fo(r) € Q;, and, by the condition
LKC, there existgy € €, for eachk such thaizy — fo(fo)| — 0. Definefy € C(Q) by

fi@) = fo(t) +zx — fo(tx) foreachr € Q.
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Thus fi(tx) = zx € Q;, and hencefy € C;, (and fy € P N C,, if 1 € P). Moreover, we
also have that

I fe = foll = lzx — fot)|<lzk — fo(to)| + | fo(to) — foltk)| — O.
Thus (ii) is proved. O

Lemma 3.4. Suppose that the condition LKC is satisfied. TiBgp*) is closed and/V is
compact inC".

Proof. Let{r} € B(p*) and{t;} € Usep(p+t(t) be such that, € ©(#), & — to € Q and
1, — 1 € C. Then|t| = |z| = 1. Moreover, sinc& \ Qy is finite, we assume, without
loss of generality, that each € Q. Then, for eackk,

Re—1i(z — p*(t)) <0 foreach € Q. (3.46)

By the condition LKC, for each € Q, there existg; € €, such that;; — z. Noting
that p* (1) — p™(t0), it follows from (3.46) that

Re—1(z — p*(t9)) <0 forallz € Q. (3.47)
0

Sincep*(rg) € Q asp™ € Pq, this means that-t € NQ[O (p*(t0)). Sincet # 0, this
implies thatp*(rg) € bdQ,, and sorg € B(p*(t9)). Hence,B(p*) is closed and hence
T € Urep(prt(?). This shows that);cp(,+)7(¢) is closed and hence compact since it is
bounded. By definition, it is now easily verified tlatis compact. Sinc& is compact, it
follows thatV is compact. [

Lemma 3.5. Suppose that the conditions LKC and IC hold. THf(p*) is closed and
the closure o' is contained inW;.

Proof. As in the proof of Lemma 3.4, Idt;} < B"?(p*) andt; € T (1) for eachk such
thatyy — 10 € Q andt, — t € C. Thus, by (3.9) and (3.17), one hag} € B(p*) and
7 € t(ty) for eachk. By Lemma 3.4, it follows thaty € B(p*) and—z € NQ,0 (p*(t0))

thanks to LKC. It suffices to show that € B"?(p*) andt € 1,(tg). If tg € Qw, they are
done by the proof of Lemma 3.4 because one thenhasB(p*) N Oy < B™’(p*) and
T € 1(tg) = 1,(f9). Thus, we may assume henceforth thag Qx. Note that if;, € O

for infinitely manyk, then, since g is finite, one hasyt= g for thesek (say for allk by

considering a subsequence if necessary). Henee B"?(p*) andt; € 1,(10). However,
in view of (3.15),7,(tg) must be a singleton in the present cases 01, (19). Therefore,
without loss of generality, we may assume that Qy for eachk. In view of (3.27), to
complete the proof, it is sufficient to show thgte Qf, p*(10) € rbQ,, and

ReT(z — p*(t0)) > 0 for somez € ri Q. (3.48)
By IC, there existy € Pq satisfying (3.7). Lep > 0 be such that

BO.5)C [ (@ —p). (3.49)

teQn
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We will show that there exists an integir> 0 such that
_ 0
B <p(to) — p*(10), 5) c () (@ —p ). (3.50)
k>N

Indeed, takeV > 0 such that(p() — p*(tx)) — (p(to) — p*(t0))| < % for eachk > N.
Then

)
B <13(to) — p*(t0), 5) C B(p(t) — p*(t), 0) foreachk>N. (3.51)

On the other hand, by (3.49),
B(p(x) — p* (1), 0) C Q, — p™ (1) for eachk. (3.52)

Consequently, (3.50) follows from (3.51) and (3.52). 8&t:= ;> v (2 — p* ).
Then 0€ bdQ* and p(10) — p*(tp) € int Q* by (3.50). In particular,

Rea(p(to) — p*(10)) <0 for eachr € No+(0) \ {0}.
Hence, there exists a positive numbesuch that, for each € Nq+(0) with |o| = 1,
Reu(p(to) — p*(to)) < — b < 0. (3.53)

Since—1; € NQ,k (P*t), | — | =1 andNQ,k (p*(tx)) € Ng+(0) for eachn >N, we
have that

Re—t;(p(tg) — p*(t0)) < —b < 0 foreachk>N. (3.54)
Noting thatr; — 7, it follows that
Re—1(p(to) — p*(to))< — b < 0. (3.55)

Thus,, contains more than one poing (o), p*(fo) being distinct members dd,,). It
follows thatQ,, is a line-segment (recalling thaf ¢ Qy), i.e.,to € Qg. Consequently,
by (3.7), p(to) € riQ,,. Therefore (3.48) holds by (3.55). Sinceh—1 € N, (p*(t0))
(noting p(10) € Qy,), it follows from (3.55) thatp* (1) must be an end point &, i.e.,
p*(to) € rbQy,. The proof of Lemma 3.5 is complete

Lemma 3.6. Let® be a complex linear functional oA such that
Re®(p) =0 for eachp € Pg. (3.56)
Then there exist a nonnegative integer s witd2n —m, {t”}._, € QpUQs and{r’j’}*}:l C

jli=1
C \ {0} with eachr’; € —Nq, (p*(t}/)) such that
' j

®(p)+ Y p(t])77=0 foreachp e P. (3.57)
j=1



C. Li, K.F. Ng / Journal of Approximation Theory 136 (2005) 159-181 173

Proof. We assume tha@z U Qg # @ (the result is trivial otherwise). For eache Qp,
spary (Q; — p*(1)) is a line passing through the origin. Hence there exists C with
|;| = 1 which is “perpendicular” to spai(©2; — p*(¢)) in the sense that

ReT; o = 0 <= o € spark(Q, — p*(1)). (3.58)
Thus, defining the real linear functionglon P by

& (p) = Ret; p(r) foreachp € P, (3.59)
we can characterize the kernel®ffor r € Qg:

p € Keré, < p(r) € span(Q, — p*(t)). (3.60)

For eachr € Qg, two linear functionals orP (respectively, denoted b§; and¢;) will be
useful for us. They are defined by

¢ (p) =Rep(t) foreachp € P,
&(p) =Reip(r) foreachp e P,
where i= /—1. Thus, forr € Qg,

p(t) =0 p e Ker¢ (Kerg,.

By (3.10), we have that

Pg = ( N Keré,) N ( N Kefi;) : (3.61)

teQpUQs teQs

It will be convenient to list the functionals
(G:teQruosJig: re Qs =& ¢, (3.62)

wherer = |Qgl| + 2|Qsl, and for exampleQ | stands for the number of elements in
Q. Lettingg := 2n — m, the difference of real dimensions Bfand Pz, one has; <r.
Recalling that{i4, ..., v,,} is a basis ofPy, there exist),, 4, ..., 5, € P such that
{1, ..., ¥y} isareal basis oP. SincePr Nspark{¥,, 11, - - ., Yyt = {0}, itis easy to
verify thatthe vector$@,; : i =m+1,...,m+q} C R" are (real) linearly independent,
where eacha’; is defined by

@i= (W) _,eR foreachi=m+1,....m+q.

Consequently, there exigtmany coordinates such that the restrictiaiis| of @; (m +
1<i<m + q) to these coordinates are linearly independent. Without loss of generality, let
us assume that they are the figstoordinates; thus,

det(C"W)1cyvey, mer<mrg 70 (3.63)
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Therefore there exist real numbeys, . . ., /1;) such that
q
O RE W) =-Red(y;) fori=m+1,....m+q. (3.64)
y=1

Note that, fori = 1,2, ..., m, both sides of (3.64) are equal to zero thanks to (3.56) and
(3.61). Therefore

q
> 4E(p) + Red(p) =0 (3.65)
v=1

foreachp € {Y1, ... ¥ Vg1, - - s Ypgy - INview of (3.65), itis clear that, to complete
the proof, it suffices to show that the first summation in (3.65) can be expressed in the form

q s
2 (p) =Re Z p(t}’)r’jf for eachp € P (3.66)
1

V= j=1

for somes <gq, {t}’ ‘21 S Qr U Qs, {T’j}s,:l C C\ {0} such that

r’jf € —Ng, (p*(t}’)) foreachj =1,2,...,s. (3.67)
j

To do this, we consider, in light of (3.62) with 1< v < ¢ for each of the following cases.
(@) &" = ¢, for somer € Qp. Thent) := A1, € —Ngq, (p* (1)) by (3.58), and by (3.59),

(GLEM(p) = 2, ReT; p(t) = Rep(r)t] for eachp € P.

(b) & = ¢ for somer € Qs buté, ¢ {1, &2,..., &) Thent! := 2, € —Ng, (p*(1))
asQ, = {p*(»)}, and

(LEM)(p) = 2, Rep(r) = Rep(t)t/ foreachp € P.

(c) & = ¢& for somer € Qg buté, ¢ {4, 2, ..., &) Thent) := i/, € —Ng, (p*(1))
and

(LEM(p) = 2, Reip(t) = Rep(r)t) for eachp € P.

(d) & = ¢, for somer € Qs which satisfies an additional property tifate {£1, &2, ...,
&"}. Assume that, = e, Thent/ := 1, + i, € —Ng, (p*(1)) asQ; = {p*(1)}, and

EN(p) + Ay & (p) = X, Rep(t) + 1, Rei p(t) = Rep(r)r] foreachp € P.

Combining (a—d) and deleting these terms with the correspontliag0, (3.66) is seen to
hold. O

In the following Theorems 3.1-3.5, we consider relations of the following statements for
a fixed pair of functions € C(Q) andp* € Pq. Recall thatr := f — p*.
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(i) p*is abest-restricted range approximatiori ftlom P with respect td€,;}.
(i) Foreachp € Pg, there exist € M(o), t' € B"’(p*) such that

max{ Re(p(t)a(1)), max Re(p(")7)} >0. (3.68)

et (1)
(iiiy Foreachp € P, there exist € M (o), ' € B"’(p*) andrt € 1,(t') such that

max{Re(p(t)a (1)), Re(p(t')7)} > 0. (3.69)

(iv) The origin of R" belongs to the convex hull of the/+.

(v) The origin of R™ belongs to the convex hull of the,.
(vi) The origin of C"* belongs to the convex hull of the.
(vii) There exist

{tiYi_1 S M(0), {Ai}i_g C (0, +00)
and
Yo < B, (7))o c C\{0)
with 14+ 1<k +1<m + 1 such tha1r/j € —Nq, (p*(t})) foreachj =1,...,[,and
j

k [

Re)  Jip(t)o() +Re ) p(t))7; =0 foreachp € Pk. (3.70)
i=1 j=1

(viii) There exist

L1 € M(0), {A}i_y C (0, +00) (3.71)
and
Y S BN, {7, cC\ {0} (3.72)

with 1+1'<k+1'<2n+ 1 such that/j € —Ng, (p*(t})) foreachj =1,...,/,and
J

k U

> i)+ pt))7; =0 foreachp € P. (3.73)
i=1 j=1

(ix) J(@IpN (ZtEQ Ne, (p*)|7’> >0

Theorem 3.1. The following implications hold.

(Vi) < (Viil) <= (iX) = (iv) = (ii) < (iii)
4 ¢
() (V) = (Vi)
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Proof. By (3.29), itis easy to verify thaiv) <= (v). Also, by (3.17) and (3.18), we have
(i) < (iii). Applying Lemma 3.6 to the functiondl onP defined by

k [
O(p) = Aipt)o(t) +Re ) p(t;»)‘z:il’j foreach p e P,
- —~

we have that(vii) = (viii) with I’ = [ + s, wheres is as in Lemma 3.6. To show
(viii) = (vii) = (v), we suppose that (viii) holds. Thus we assume that (3.73) holds
with appropriate, ', {t;}, {4}, {t}} and{r’j} as stated in (viii). Without loss of generality,
assume thatr;, .... 1} € B"P(p*), {1/ ,4..... 1} € B(p*) \ B""(p*). Note that ifl +
1<j</l', thentjy € Qs U Qp, anth} is either a singleton or a line-segment containing

p*(t;) as an internal point (seeing (3.9)). Hence

Re?jfx =0 foreachr € spany(Q, — p*(t})). j=I1+1.....1. (3.74)
J

This implies that, for eaclp € Pg, Retp(t}) = 0 if I + 1< <!’ becausep(t}) €
spark(Q,jf_ — p*(tl;)) by (3.10). Consequently, (3.73) implies that

k !
Re Z 2ip(t)o(t) + Re Z p(t;)7; =0 foreachp € Pk. (3.75)
im1 =1

Replacing/;, ¢; by their appropriate positive multipliers if necessary, we can assume that
k +1<m + 1. To see this, we note first thatli%f| € T(t;.) \ T,(t;), then (3.16), (3.13)
and (3.10) imply that Rp(t’)r’ = 0 for eachp € Py and thus the corresponding term in

(3.75) can be deleted. Henceforth, we suppose therefore thaﬁ—é@@m(r ) in (3.75).

Noting thatk > 1 from the assumption and recalling definitions (3. 20) and (3.25), it follows
from (3.75) (applied t@/4, ..., ¥, in place ofp) that

—b,(11) € conefb,(r2), ..., b (1), C-(17), ..., ()} € R™.

Consequently, bjl9, Corollary 17.1.2];-b, (t1) can be expressed as a linear combination of
at mostm elements from(b, (r2), ..., b, (%), ¢, (17, ..., ¢ (¢))} with positive coefficients.
Thus, appropriately redefining and¢’; if necessary, we can assume that;- [ <m + 1,
(3.75) holds foreacp € {¢4, ..., ¢,,} and hence for alp € Pg. Thereforgviii) = (vii)
and hencéviii) < (vii).

For (vii) = (v) & (i), suppose that (3.70) holds with appropriéte, {/;}, {t;.} and{r’j}
givenin(vii) Byan earlierargument, we may assumettfat. ., /} € Ow, {t/ 4, ..., 1}

C Ok and - |r | € 7,(t;) for eachr + 1< j </. Thus, (3.70) means that the origin Bf
belongs to the convex hull of the/).. Consequently, (v) holds. We go on to show tfiat
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holds. To this end, lep € Pq. Thenp* — p € Pg and

k 1
Re > %(p* — p)t)a(t) + Re Y (p* — p)(t))7; =0, (3.76)
i=1 j=1
Sincek > 1 and eachi; > 0, we assume without loss of generality t@izl A = 1. Thus,
If—pl= Zle Zil(f — p)(a)2. Sincep € Pq andr’j € —Nq, (p*(t})), one has that
J

Re(p* — p)(t))T;<0, j=1,2.....1L (3.77)

Hence
k

If=pI2= )" Alf - p)(r,>|2+zree2<p - PNT;

i=1 j=1

|
M»

Jl(f = p )(t,>|2+ZA [(p* = p))I?

i=1

Il
[N

k )
+2Re " 4i(p" = p)(t)(f = pIa) +2Re Y (p* = p)()T

i=1 j=1
k k

= > Ll(f = PP+ Ll = p) )l
i=1 i=1

> | f - p*I%

where the second equality holds because of (3.76) while the last inequality holds because
{t;} € M (o). This means thagt* is a best approximation fdrom Pq and hence (i) holds.

For (v) = (vi) & (ii), suppose that there exist nonnegative integerswith k +7>1
such that

0 € conv{b,(t1), b, (r2), ..., by (), - (17), ..., C- (1))} € R™ (3.78)

for some{s; }k 1 € M(o) and {t }’ -1 S B’ (p*). By the Caratheodory Theorem (cf.
[2] or [21, p. 73]), we assume Wlthout loss of generality that [ <m + 1. Moreover,
by (3.17), (3.20) and (3.25), there exig} C (0, +00) and{r]} c C\ {0} with r] €

—Ng, (p*(t;.)) \ {0} for eachj such that (3.70) holds for eaghe {y/4, ..., ¥,,} and hence

for ea{chp € Pg. (Note: Sincek may be zero, we cannot conclude that (vii) holds.) Now
by applying Lemma 3.6 to the function@ Pz — C defined by

k I
D(p) = Z Aipt)ae(t;) + Z p(t})r_/j foreach peP

we conclude that (3.57) holds with appropriatg}, {r/jf} stated in Lemma 3.6. By the
Caratheodory Theorem, we assume that/ + s <2n + 1. Thus we see that (vi) holds
(dividing both sides of (3.57) by a positive constant if necessary). Note, in passing, again
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that (viii) would hold provided that # 0. Moreover, (ii) must also hold because otherwise
there exists an elemept € Py such that

max(Re(po(t;)o (1)), Re(po(t))7})} < O
foreachi =1,...,kandj =1, ...,1. (3.79)
This contradicts (3.70) as the number on the left-hand side of (3.70pwithpg is negative
by (3.79). Hence, the proof ¢¥/) —> (vi) & (ii) is complete.

Finally we show thatviii) <= (ix). Suppose first that (ix) holds. Then, there exist
v* € J(o) andw;f € Nc, (p%),j=1,2,...,swithp* € det}_ (namelyt; € B(p*) such
that '

(v*, py =) (w}, p) forallpeP. (3.80)
j=1

Setu™ = v*/|[v*||. Applying [22, Lemma 1.3, p. 169] to the real linear spariob { 1},
there exist a positive integer(with 1<r <2(n 4 1)), r extreme points3, ..., u; of the
unit ball =* of C(Q)* and positive constan{, i = 1,2,...,r, with Y7 ; f; = 1 such
that

(*, p) = Pifuf,p) forall pespan(PU{f}. (3.81)
i=1
By a well-known representation of the extreme pointZbf(cf. [22, p. 69]), there exist
somey; € C with |o;| = 1 ands; € Q such that

* .
Mi:aiefi’ l=1,2,...,r.

By the definition ofu*, |u*| = 1 and(u*, o) = ||g|; hence, by (3.81); € M(s) and
o; = o(t;)/|lo|l. Furthermore, by (3.41), for eaghthere existSc’j € —Ng, (p*(t})) such
j

that—w;f = Tjet}. Therefore, (3.80) becomes

r N
Y Bip)e) + Y pt)T; =0 forallpeP, (3.82)
i=1 j=1
wheref; = |[v*||B;/llo|| for eachi =1, ..., r. Set

Cj = (¢1(1), ..., $, ()7, foreachj =1,....s.
Then (3.82) implies that
—pib(t1) € condBob(ta), ..., BLb(t), ca, ..., Gl

Since dingP = 2n, by [19, Corollary 17.1.2])~p8;b(#1) can be expressed as a linear
combination of at most:2elements fron{,b(z2), ..., B.b(#,), c1, . .., ¢s} with positive

coefficients. Hence, replacingj and<’; by their appropriate positive multipliers we can
assume without loss of generality tl'lvatv in (3.82) satisfy the additional property that
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1+ s<r + s<2n + 1. Thus (viii) holds with(k,!") = (r, s). Conversely,/ suppose that
(viii) holds. Hence we have (3.73) with appropridtel}_;, {(4;}{_, and{#}},_y, {7},

as stated in (viii). We can of course assume Eﬁ;l i = 1, and rewrite (3.73) as
k 4 o
; lio(ti)e; = — er’jetj/_ (e P. (3.83)
= j=

By Lemma 3.2,r_/je,} € Nc, (p*) for eachj = 1,2,...,/". On the other hand, since
J

ti € M(o), we have thato(t;)e;, 0) = |o||2 for eachi = 1,2,..., k. Therefore the
functional expressed by either side of (3.83) belongs to the intersection in (k).

Theorem 3.2. It holds that(v) <= (vii) if IC is assumedand that(vi) <= (viii) if ICq
is assumed.

Proof. Suppose that (v) holds and we proceed as in the proofvipr— (vi) & (ii)

of Theorem 3.1. If IC is assumed in addition,é) convl/. by Lemma 3.1. Henc& in
(3.78) must be nonzero and so (vii) holds. Similarly, suppose that (vi) holds (thus, with the
exception thakis possibly zero, (3.73) holds). Suppose further thagti$&ssumed (instead

of IC). Then 0¢ convl/ by Lemma 3.1. Henckin (3.73) must be nonzero. Therefore (viii)
holds. O

Theorem 3.3. If the system{P, C, : t € Q} has the strong CHIP ap*, then(i) <= (vii).

Proof. Note thatPq = P N (N;coC;). By the implication (ik=> (iv) in Theorem 2.3 and
the fact thatP is a vector subspace containipg (so Np(p*)|p» = 0), we now have that
(i) <= (ix) thanks to the strong CHIP assumption. Since {3 (vii) by Theorem 3.1,
(i) < (vii) holds. [

Theorem 3.4. If both LKC and IC are assumedthen the statements in the ligj—(ix)
excepi(vi) are equivalent to each other.

Proof. Suppose that both LKC and IC hold. We will show that the CCS-sys$@enc; :

t € Q}hasthe strong CHIP at*. For this purpose, note that, by Lemma 3.3 and Remark 2.1,
the condition LKC implies that the set-valued functior> C, is lower semicontinuous
on Q while, by Lemma 3.1, the condition IC implies that the systgmC, : r € Q}
satisfies the weak—strong interior-point condition withz, Qs). By Theorem 2.1, the
system{P,C, : t € Q} has the strong CHIP gi*. By Theorems 3.3, 3.1 and 3.2, it
remains to show that (iB= (v). Suppose on the contrary that (ii) holds but (v) is false.

Then, by Lemma 3.5, @ convW;" (C convW,). By the Linear Inequality Theorem (see
[2]), there existz? = (49, ..., %) € R™ such that

w,z% <0 forallu e W;. (3.84)
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Then maéew—;r(u,zo) <0 because/T;F is compact (noting thatV; is bounded). Let

po = Y1 19%;. Thenpg € Pg. By (3.25) and (3.21), for any € M (o), t' € B"*(p*)
andt € 7 (¢'), one has

Re(po(t)a(1)) = (b, (1), 2%), Re(po(t)7) = (us, 2°),

whereu, € cf(¢') is defined byu, := (Reyq(1)7, ..., Rey,, (t')7). Since{b, (1)} U
¢ (t') € Wi, we have that

et ()

maX{Re(po(t)W), max Re(po(t’)f)}

= max{ (b, (1), 2%, max (uc,zo) { < max(u,z% <0,
et (1) uewt

which contradicts (ii). [

Theorem 3.5. If both KC andICy are assumedhen the statemen{g—(ix) are mutually
equivalent.

Proof. Suppose that both KC andd®@old. ThenV is compactirC" by Lemma 3.4. Using
this, and similar arguments as in the proof of (ii)=>(v) in Theorem 3.4 give that#)

(vi) (useW, C" and Re(u, z) to replaceW,”, R™ and (u, z)). By Theorem 3.2, (vi}=

(viii). Thus, by Theorem 3.1, it remains to show thats (vii). In view of Theorem 3.3,

it suffices to show that the CCS-systé, C, : ¢ € Q} has the strong CHIP at*. But

this follows easily from Theorem 2.2 which is applicable to this system by Lemma 3.1(i)
and Lemma 3.3 (thanks to the assumptiong)l
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